The Connection Between Electrical Components and AC Functionality

HVAC duct sealing

Air conditioning units are essential appliances that provide comfort by regulating indoor temperatures. At the heart of these systems lies a network of electrical components that play a crucial role in their functionality. Understanding the connection between these electrical components and the operation of air conditioning units is vital for anyone seeking to maintain or troubleshoot these devices.


The primary electrical components in an air conditioning unit include the compressor, condenser fan motor, evaporator fan motor, thermostat, capacitors, relays, and various switches. Each component has a specific function that contributes to the overall performance of the system.


The compressor is often considered the core of an air conditioning unit. Proper HVAC care includes Thermostat troubleshooting a quick tune-up might resolve the issue.. It circulates refrigerant through the system by compressing it into a high-pressure gas before it moves to the condenser coils. The operation of the compressor relies heavily on electricity; any disruption in its power supply can lead to inefficiencies or complete failure of the cooling process.


Coupled with the compressor is the condenser fan motor. This component ensures that heat absorbed from indoors is effectively released outside by drawing air across the condenser coils. Like all motors, it requires a reliable electric current to function optimally.


Inside your home, you'll find an evaporator fan motor that plays a pivotal role in distributing cooled air throughout your space. This motor works in tandem with ductwork and vents and needs consistent electrical input to ensure even cooling distribution.


A thermostat acts as the control center for an air conditioning unit. It regulates when and how long various components should run based on user settings and ambient conditions. Modern thermostats often require both low-voltage wiring for communication with other parts of the AC system and batteries to maintain settings during power interruptions.


Capacitors are another critical component within AC units. They store and release electrical energy necessary for starting motors such as those in compressors and fans. Without capacitors, these motors would struggle to start under load conditions due to insufficient initial torque.


Relays and switches serve as gatekeepers within an air conditioning system's electrical circuitry. Relays allow low-voltage circuits like those from thermostats to control high-voltage components safely while ensuring operations are initiated correctly according to user commands or system requirements.


The seamless interplay between these electrical components determines not only how effectively an AC unit functions but also its efficiency and longevity. A failure or malfunction in any part can result in reduced cooling capacity or increased energy consumption-both undesirable outcomes from economic and comfort perspectives.


In conclusion, understanding how each electrical component contributes individually yet operates collectively within an air conditioning unit underscores their integral role beyond mere hardware pieces-they define whether your living space remains comfortably cool or unbearably warm during sweltering days. Regular maintenance checks focusing on these elements can prevent disruptions while prolonging appliance lifespan-a worthwhile investment towards uninterrupted comfort amidst rising global temperatures.

Overview of Electrical Components in Air Conditioning Units

The Role of the Compressor and Its Electrical Requirements

Air conditioning (AC) systems are an integral part of modern life, providing comfort in homes and businesses alike. At the heart of every AC system lies a critical component: the compressor. The role of the compressor is pivotal not only to the cooling process but also to the overall functionality of the air conditioning unit. Understanding its function and electrical requirements is essential for appreciating how various electrical components contribute to AC efficiency.


The compressor can be likened to the heart of an AC system. Its primary function is to circulate refrigerant, a chemical compound that transitions between liquid and gas states, through a cycle that absorbs heat from indoor spaces and releases it outdoors. This process begins as the compressor compresses low-pressure refrigerant gas into high-pressure gas, increasing its temperature as well. This hot, pressurized gas then moves through the condenser coils where it releases heat and transforms back into a liquid state before continuing its journey through expansion valves and evaporator coils, eventually returning to its gaseous form when absorbing indoor heat.


The efficiency of this cyclical process largely depends on how effectively the compressor operates, which brings us to its electrical requirements. Compressors typically require a significant amount of electricity to start up due to their need for high initial torque; thus, they often rely on start capacitors or run capacitors that provide additional power bursts during startup or operation. These capacitors play a crucial role in maintaining voltage stability and ensuring smooth operation by preventing potential overloads that could cause damage or reduce efficiency.


Moreover, compressors are generally designed to operate at specific voltage levels; deviations from these levels can lead to inefficiencies or even failure. Therefore, proper electrical connections and consistent power supply are imperative for sustaining optimal performance. Electrical components such as circuit breakers and fuses act as safety measures by protecting compressors from power surges or short circuits that could otherwise result in costly damage.


In addition to individual component requirements, understanding how different parts work together within an AC system is vital for achieving desired cooling results while minimizing energy consumption. For instance, integrating variable speed drives with compressors allows for more precise control over cooling output by adjusting motor speed according to demand rather than operating at full capacity continuously-a feature that substantially reduces electricity usage without compromising comfort levels.


In summary, compressors serve as indispensable elements within air conditioning units by facilitating efficient thermal exchange processes necessary for effective climate control indoors. Their ability to perform optimally hinges upon meeting specific electrical demands while coordinating seamlessly with other components involved in regulating temperature settings accurately across diverse environments-highlighting both their centrality within broader mechanical systems powering our daily lives along with ongoing advancements aimed towards enhancing sustainability alongside user satisfaction across ever-evolving technological landscapes shaping tomorrow's world today.

Understanding the Functionality of the Condenser Fan Motor and Its Impact on System Efficiency

Air conditioning systems are marvels of modern engineering, seamlessly blending a variety of electrical and mechanical components to create a comfortable indoor environment. Among these components, the condenser fan motor plays a pivotal role in ensuring the system operates efficiently. Understanding its functionality and impact on overall system efficiency is crucial for both technicians and users who seek to optimize performance and reduce energy consumption.


At the heart of an air conditioning system lies the condenser unit, which is responsible for releasing heat absorbed from indoors to the outside environment. The condenser fan motor drives the fan blades that force air over the condenser coils, facilitating the heat exchange process. This mechanism is vital because it ensures that the refrigerant within the coils cools down sufficiently before cycling back into the indoor evaporator unit.


The functionality of the condenser fan motor directly influences how effectively this heat exchange occurs. A well-functioning motor maintains an optimal airflow rate across the coils, preventing them from overheating and ensuring that refrigerant temperatures remain at levels conducive for efficient cooling cycles. Conversely, if the motor fails or underperforms, airflow diminishes, leading to elevated coil temperatures and increased pressure within the system. This scenario forces the compressor to work harder, resulting in higher energy consumption and potential mechanical failures over time.


Delving deeper into its impact on system efficiency reveals a cascade of effects stemming from inadequate operation of this component. Firstly, reduced airflow compromises cooling capacity; rooms may take longer to reach desired temperatures or fail to maintain them altogether during peak heat periods. Secondly, as energy demands rise due to inefficient operation, utility bills can escalate-a concern for environmentally conscious consumers aiming to minimize their carbon footprint. Lastly, prolonged strain on other components like compressors can shorten their lifespan, leading to costly repairs or replacements.




The Connection Between Electrical Components and AC Functionality - HVAC duct sealing

  1. HVAC duct sealing
  2. geothermal heating and cooling
  3. humidity control

Maintenance practices play a significant role in preserving condenser fan motor functionality and thus ensuring overall AC efficiency. Regular inspections help identify issues such as worn-out bearings or misaligned blades that could impede performance. Additionally, cleaning debris from around outdoor units prevents obstructions that might restrict airflow. For systems exhibiting signs of diminished efficiency-such as unusual noises or inconsistent cooling patterns-professional evaluation is recommended to diagnose potential motor-related problems promptly.


In conclusion, understanding how electrical components like condenser fan motors contribute to AC functionality illuminates their critical role in maintaining efficient operations. By ensuring these motors function optimally through regular maintenance and timely interventions when issues arise, users can enjoy not only improved cooling performance but also enhanced energy savings and longevity of their air conditioning systems. As technology advances continue refining HVAC designs, appreciating each component's contribution remains essential for maximizing benefits while minimizing environmental impacts.

Understanding the Functionality of the Condenser Fan Motor and Its Impact on System Efficiency

The Importance of Capacitors in Regulating AC Performance and Stability

Capacitors, often overshadowed by their more glamorous counterparts like transformers and inductors, play an indispensable role in the realm of alternating current (AC) systems. These unassuming components are critical for regulating AC performance and ensuring system stability. A deeper understanding of their importance reveals a fascinating interplay between capacitors and other electrical components, highlighting their essential function in maintaining the equilibrium of AC circuitry.


At its core, a capacitor is a device that stores electrical energy in an electric field, characterized by its ability to hold charge temporarily. This seemingly simple function belies its profound impact on AC systems, where capacitors are utilized not merely as storage units but as dynamic participants in the regulation of current flow and voltage levels. The periodic nature of AC signals makes capacitors particularly effective at influencing system behavior due to their reactive properties.


One primary role of capacitors in AC circuits is power factor correction. In many industrial and commercial settings, loads tend to be inductive, leading to lagging power factors that can cause inefficiencies and increase operational costs. By introducing capacitance into the circuit, these lagging power factors can be corrected towards unity, minimizing losses and improving system efficiency. This corrective action is crucial for reducing strain on generators and transformers, ultimately enhancing the overall stability of the power grid.


Moreover, capacitors are vital in filtering applications within AC systems. They serve as barriers against unwanted frequency components—smoothing out voltage fluctuations and reducing noise interference. This filtering capability ensures that sensitive electronic devices receive clean power with minimal distortion or spikes that could otherwise lead to malfunction or damage.


In addition to these functions, capacitors also contribute to voltage regulation in various applications such as motor starters and lighting ballasts. By stabilizing voltage levels during transient conditions or sudden load changes, they prevent potential disruptions that might compromise system reliability.


The synergy between capacitors and other electrical components highlights their integral role within larger networks. For instance, when used alongside inductors in tuned circuits or resonant filters, capacitors help achieve desired frequency responses—a testament to their versatility across different applications.


Despite being relatively small components compared to others like transformers or motors within an AC framework, the significance of capacitors cannot be overstated when it comes to ensuring optimal functionality and stability throughout an entire network.


In conclusion; while often overlooked amid more prominent elements within electrical engineering discourse—the humble capacitor stands out as a silent yet powerful contributor towards achieving efficient operation across diverse applications involving alternating currents today!

Examining the Electrical Control Board: Brain of the Air Conditioning System

The electrical control board, often referred to as the "brain" of the air conditioning system, plays a pivotal role in ensuring that our living spaces remain comfortable and cool. This complex network of components serves as the central hub for managing the myriad functions an air conditioning unit performs. Understanding the connection between these electrical components and AC functionality is crucial for diagnosing issues and improving efficiency.


At its core, the electrical control board orchestrates a symphony of interactions between various parts of the air conditioning system. It manages inputs from sensors that monitor temperature and pressure, processes these data points, and subsequently sends signals to different components like compressors, fans, and valves. The precision with which this board operates determines not only how effectively an AC unit can maintain desired temperatures but also how efficiently it uses energy.


One key component linked to the electrical control board is the thermostat. This device acts as a communicator between users and their AC systems. When adjustments are made on the thermostat-whether it's lowering or raising temperature settings-the information is relayed to the control board. In response, it executes commands to adjust compressor speeds or fan outputs accordingly. Without this seamless communication loop facilitated by the control board, maintaining consistent indoor climates would be nearly impossible.


Moreover, safety mechanisms within an AC system are heavily reliant on this control center. Overload protections, circuit breakers, and fuses are all monitored by sensors connected to the control board. If any anomalies arise-such as excessive current draw or overheating-the board can shut down specific components to prevent damage or hazards.




The Connection Between Electrical Components and AC Functionality - geothermal heating and cooling

  1. evaporator coil cleaning
  2. HVAC installation
  3. variable refrigerant flow (VRF) systems

In addition to safety features and performance regulation, modern advancements have introduced smart technology into these boards. Many contemporary units now offer connectivity options that allow homeowners to manage their systems remotely via smartphones or computers. This evolution not only enhances user convenience but also offers more detailed insights into energy consumption patterns and potential maintenance needs.


Despite its integral role in AC functionality, issues with the electrical control board can lead to significant disruptions in service. Faulty wiring connections or damaged circuits might cause erratic behavior such as frequent cycling on/off or failure to start entirely. Diagnosing problems often requires careful examination by trained professionals who can interpret error codes displayed on diagnostic interfaces linked directly with these boards.


In conclusion, while often overlooked due to its concealed location within air conditioning units' housing shells-the importance of understanding how electrical components connect through this central command cannot be overstated when considering overall functionality enhancement opportunities available today's technological landscape continues evolve rapidly offering ever-greater efficiencies both terms operation environmental impact alike!

Examining the Electrical Control Board: Brain of the Air Conditioning System
Troubleshooting Common Electrical Issues Affecting AC Functionality
Troubleshooting Common Electrical Issues Affecting AC Functionality

Air conditioning systems are an essential part of modern living, providing comfort and climate control in homes and workplaces. However, like any complex system, they can experience issues that disrupt their functionality. Troubleshooting common electrical issues that affect AC functionality requires an understanding of the intricate connection between electrical components and the overall operation of the air conditioning unit.


At the heart of every air conditioning system is a network of electrical components that work together to ensure efficient cooling. These include thermostats, circuit breakers, capacitors, relays, and compressors. Each component plays a vital role in regulating temperature and maintaining energy efficiency. When one or more of these elements fails or malfunctions, it can lead to reduced performance or complete failure of the AC unit.


One common issue that homeowners encounter is a faulty thermostat. The thermostat acts as the brain of your AC system, communicating with other components to signal when cooling is needed. If it fails to function correctly due to wiring problems or calibration errors, the entire cooling process can be compromised. Troubleshooting this involves checking for loose connections and ensuring that settings are properly configured.


Another frequent culprit behind AC malfunctions is a tripped circuit breaker. This safety device protects your home from electrical overloads by cutting off power when necessary. A tripped breaker might indicate an underlying issue such as short circuits or overloading within the system itself. Identifying why the breaker keeps tripping is crucial for resolving power supply interruptions and preventing potential damage.


Capacitors also play an integral role in powering up vital components like compressors and fans within an AC unit by storing electrical energy needed during startup phases; hence their failure could significantly impact performance levels leading towards non-functional systems altogether if left unchecked over time! Replacing worn-out capacitors promptly will restore proper operations while avoiding future complications down line maintenance schedules too!


Relays are another key element involved here since they act similarly towards switches controlling flow currents throughout various parts enabling smooth transitions between different modes (cooling/heating). Malfunctioned relays often result from burned contacts causing intermittent failures which require immediate attention before further damages occur elsewhere around house installations related areas possibly impacting overall efficiency adversely affecting utility bills eventually increasing costs unnecessarily so!


Lastly but certainly not least important factor worth mentioning relates directly back onto compressor units themselves being responsible primarily generating cold air circulated indoors spaces; thus any disruptions experienced along pathways connecting these devices should always take precedence whenever troubleshooting efforts commence initially because without them functioning optimally nothing else matters much anymore regarding achieving desired temperatures comfortably efficiently economically speaking course depending individual preferences needs specific scenarios involved naturally vary greatly person-to-person basis accordingly adjusted meet particular requirements accordingly tailored solutions provided customized assistance available upon request order address unique challenges faced daily basis surrounding environmental conditions encountered frequently especially during peak summer months typically associated higher demand placed electricity grids nationwide globally alike shared experiences amongst communities worldwide united common goal ensuring sustainable future generations come enjoy same comforts presently afforded us today thanks advancements technology made possible through continuous research development initiatives ongoing field engineering sciences disciplines concerned improving quality life everyone everywhere regardless geographical location socioeconomic status background cultural heritage traditions beliefs values upheld respected honored cherished celebrated diversity inclusion embraced wholeheartedly universally embraced humanity at large collective responsibility stewardship planet earth entrusted care guardianship entrusted privileged duty serve preserve protect safeguard posterity posterity sake progress prosperity peace harmony coexistence thriving thriving together together better tomorrow brighter brighter tomorrow brighter future ahead bright hope promise awaits ever forward journey embarked hand hand side side shoulder shoulder stride stride courage faith determination resilience perseverance unwavering commitment excellence excellence pursuit happiness joy fulfillment purpose meaning significance lives touched positively impacted transformed transformed forever indelibly marked etched

Best Practices for Maintaining Electrical Components to Ensure Optimal Air Conditioning Performance

The connection between electrical components and air conditioning (AC) functionality is crucial for ensuring optimal performance and longevity of the system. Air conditioners, like any other complex machinery, rely heavily on their electrical components to function effectively. These components include capacitors, relays, circuit breakers, and more. Understanding how these elements interact with the AC system and employing best practices for their maintenance is vital to avoid unexpected breakdowns, ensure energy efficiency, and extend the lifespan of the unit.


Firstly, regular inspection of the electrical connections in an AC unit cannot be overstated. Over time, vibrations from the operation of the air conditioner can cause wires to loosen or become disconnected entirely. Loose connections can lead to arcing-a dangerous condition where electricity jumps from one connection point to another-which can cause significant damage to both the component itself and surrounding parts. Therefore, it is advisable to schedule periodic checks by a qualified technician who can tighten any loose connections and replace worn-out wires.


Moreover, capacitors are among the most critical electrical components within an AC system as they store and release energy necessary for starting up the compressor and fans. A faulty capacitor can lead to difficulty in starting these essential parts or even prevent them from running altogether. Regular testing of capacitors should be conducted to ensure they are functioning correctly; this typically involves measuring capacitance with a multimeter to confirm it falls within specified tolerances.


Relays and contactors are also pivotal as they control the flow of electricity within the AC system. These switches need careful attention because if they fail or become stuck in an open or closed position, they can disrupt normal operation or create safety hazards such as overheating. Checking these components for signs of pitting or corrosion on contacts during routine maintenance visits will help identify potential issues early on.


Additionally, circuit breakers act as safeguards against overloads by cutting off power when excessive current flows through a circuit. Ensuring that circuit breakers are rated appropriately for your specific AC unit is important; using incorrect ratings could either result in frequent trips-hindering performance-or insufficient protection against overloads.


Besides individual component checks, maintaining clean environments around electrical parts helps prevent dust accumulation which can lead to overheating or short circuits over time. Simple actions like cleaning vents regularly contribute significantly towards maintaining optimal airflow around these sensitive areas.


Finally yet importantly comes professional servicing at least once a year before peak usage seasons begin (usually spring). This comprehensive check-up by HVAC professionals includes detailed assessments not just limited only towards mechanical aspects but extending into thorough evaluations concerning all interconnected electronic systems too-thus ensuring holistic upkeep overall!


In conclusion then: The seamless integration between each constituent part within one's air conditioning setup relies heavily upon diligent care bestowed onto its integral electronics therein! By adhering closely alongside prescribed methodologies concerning inspections/maintenance routines discussed herein today we stand poised ready equipped truly maximizing investment returns garnered via sustained operational excellence achieved thereby safeguarding comfort levels desired without compromise long into future years ahead!

Best Practices for Maintaining Electrical Components to Ensure Optimal Air Conditioning Performance
Geothermal heating

Geothermal heating is the direct use of geothermal energy for some heating applications. Humans have taken advantage of geothermal heat this way since the Paleolithic era. Approximately seventy countries made direct use of a total of 270 PJ of geothermal heating in 2004. As of 2007, 28 GW of geothermal heating capacity is installed around the world, satisfying 0.07% of global primary energy consumption.[1] Thermal efficiency is high since no energy conversion is needed, but capacity factors tend to be low (around 20%) since the heat is mostly needed in the winter.

Geothermal energy originates from the heat retained within the Earth since the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface.[2] Most high temperature geothermal heat is harvested in regions close to tectonic plate boundaries where volcanic activity rises close to the surface of the Earth. In these areas, ground and groundwater can be found with temperatures higher than the target temperature of the application. However, even cold ground contains heat. Below 6 metres (20 ft), the undisturbed ground temperature is consistently at the mean annual air temperature,[3] and this heat can be extracted with a ground source heat pump.

Applications

[edit]
Top countries using the most geothermal heating in 2005[4]
Country Production
PJ/yr
Capacity
GW
Capacity
factor
Dominant
applications
China 45.38 3.69 39% bathing
Sweden 43.2 4.2 33% heat pumps
USA 31.24 7.82 13% heat pumps
Turkey 24.84 1.5 53% district heating
Iceland 24.5 1.84 42% district heating
Japan 10.3 0.82 40% bathing (onsens)
Hungary 7.94 0.69 36% spas/greenhouses
Italy 7.55 0.61 39% spas/space heating
New Zealand 7.09 0.31 73% industrial uses
63 others 71 6.8    
Total 273 28 31% space heating
Direct use of geothermal heat by category in 2015 as adapted from John W. Lund [5]
Category GWh/year
Geothermal heat pumps 90,293
Bathing and swimming 33,164
Space heating 24,508
Greenhouse heating 7,407
Aquaculture pond heating 3,322
Industrial uses 2,904
Cooling/snow melting 722
Agriculture drying 564
Others 403
Total 163,287

There are a wide variety of applications for cheap geothermal heat including heating of houses, greenhouses, bathing and swimming or industrial uses. Most applications use geothermal in the form of hot fluids between 50 °C (122 °F) and 150 °C (302 °F). The suitable temperature varies for the different applications. For direct use of geothermal heat, the temperature range for the agricultural sector lies between 25 °C (77 °F) and 90 °C (194 °F), for space heating lies between 50 °C (122 °F) to 100 °C (212 °F).[4] Heat pipes extend the temperature range down to 5 °C (41 °F) as they extract and "amplify" the heat. Geothermal heat exceeding 150 °C (302 °F) is typically used for geothermal power generation.[6]

In 2004 more than half of direct geothermal heat was used for space heating, and a third was used for spas.[1] The remainder was used for a variety of industrial processes, desalination, domestic hot water, and agricultural applications. The cities of Reykjavík and Akureyri pipe hot water from geothermal plants under roads and pavements to melt snow. Geothermal desalination has been demonstrated.

Geothermal systems tend to benefit from economies of scale, so space heating power is often distributed to multiple buildings, sometimes whole communities. This technique, long practiced throughout the world in locations such as Reykjavík, Iceland;[7] Boise, Idaho;[8] and Klamath Falls, Oregon;[9] is known as district heating.[10]

In Europe alone 280 geothermal district heating plants were in operation in 2016 according to the European Geothermal Energy Council (EGEC) with a total capacity of approximately 4.9 GWth.[11]

Extraction

[edit]

Some parts of the world, including substantial portions of the western USA, are underlain by relatively shallow geothermal resources.[12] Similar conditions exist in Iceland, parts of Japan, and other geothermal hot spots around the world. In these areas, water or steam may be captured from natural hot springs and piped directly into radiators or heat exchangers. Alternatively, the heat may come from waste heat supplied by co-generation from a geothermal electrical plant or from deep wells into hot aquifers. Direct geothermal heating is far more efficient than geothermal electricity generation and has less demanding temperature requirements, so it is viable over a large geographical range. If the shallow ground is hot but dry, air or water may be circulated through earth tubes or downhole heat exchangers which act as heat exchangers with the ground.

Steam under pressure from deep geothermal resources is also used to generate electricity from geothermal power. The Iceland Deep Drilling Project struck a pocket of magma at 2,100m. A cemented steelcase was constructed in the hole with a perforation at the bottom close to the magma. The high temperatures and pressure of the magma steam were used to generate 36MW of electricity, making IDDP-1 the world's first magma-enhanced geothermal system.[13]

In areas where the shallow ground is too cold to provide comfort directly, it is still warmer than the winter air. The thermal inertia of the shallow ground retains solar energy accumulated in the summertime, and seasonal variations in ground temperature disappear completely below 10m of depth. That heat can be extracted with a geothermal heat pump more efficiently than it can be generated by conventional furnaces.[10] Geothermal heat pumps are economically viable essentially anywhere in the world.

In theory, geothermal energy (usually cooling) can also be extracted from existing infrastructure, such as municipal water pipes.[14]

Ground-source heat pumps

[edit]

In regions without any high temperature geothermal resources, a ground-source heat pump (GSHP) can provide space heating and space cooling. Like a refrigerator or air conditioner, these systems use a heat pump to force the transfer of heat from the ground to the building. Heat can be extracted from any source, no matter how cold, but a warmer source allows higher efficiency. A ground-source heat pump uses the shallow ground or ground water (typically starting at 10–12 °C or 50–54 °F) as a source of heat, thus taking advantage of its seasonally moderate temperatures.[15] In contrast, an air source heat pump draws heat from the air (colder outside air) and thus requires more energy.

GSHPs circulate a carrier fluid (usually a mixture of water and small amounts of antifreeze) through closed pipe loops buried in the ground. Single-home systems can be "vertical loop field" systems with bore holes 50–400 feet (15–120 m) deep or,[16] if adequate land is available for extensive trenches, a "horizontal loop field" is installed approximately six feet subsurface. As the fluid circulates underground it absorbs heat from the ground and, on its return, the warmed fluid passes through the heat pump which uses electricity to extract heat from the fluid. The re-chilled fluid is sent back into the ground thus continuing the cycle. The heat extracted and that generated by the heat pump appliance as a byproduct is used to heat the house. The addition of the ground heating loop in the energy equation means that significantly more heat can be transferred to a building than if electricity alone had been used directly for heating.

Switching the direction of heat flow, the same system can be used to circulate the cooled water through the house for cooling in the summer months. The heat is exhausted to the relatively cooler ground (or groundwater) rather than delivering it to the hot outside air as an air conditioner does. As a result, the heat is pumped across a larger temperature difference and this leads to higher efficiency and lower energy use.[15]

This technology makes ground source heating economically viable in any geographical location. In 2004, an estimated million ground-source heat pumps with a total capacity of 15 GW extracted 88 PJ of heat energy for space heating. Global ground-source heat pump capacity is growing by 10% annually.[1]

History

[edit]
The oldest known pool fed by a hot spring, built in the Qin dynasty in the 3rd century BC

Hot springs have been used for bathing at least since Paleolithic times.[17] The oldest known spa is a stone pool on China's Mount Li built in the Qin dynasty in the 3rd century BC, at the same site where the Huaqing Chi palace was later built. Geothermal energy supplied channeled district heating for baths and houses in Pompeii around 0 AD.[18] In the first century AD, Romans conquered Aquae Sulis in England and used the hot springs there to feed public baths and underfloor heating.[19] The admission fees for these baths probably represents the first commercial use of geothermal power. A 1,000-year-old hot tub has been located in Iceland, where it was built by one of the island's original settlers.[20] The world's oldest working geothermal district heating system in Chaudes-Aigues, France, has been operating since the 14th century.[4] The earliest industrial exploitation began in 1827 with the use of geyser steam to extract boric acid from volcanic mud in Larderello, Italy.

In 1892, America's first district heating system in Boise, Idaho, was powered directly by geothermal energy, and was soon copied in Klamath Falls, Oregon in 1900. A deep geothermal well was used to heat greenhouses in Boise in 1926, and geysers were used to heat greenhouses in Iceland and Tuscany at about the same time.[21] Charlie Lieb developed the first downhole heat exchanger in 1930 to heat his house. Steam and hot water from the geysers began to be used to heat homes in Iceland in 1943.

By this time, Lord Kelvin had already invented the heat pump in 1852, and Heinrich Zoelly had patented the idea of using it to draw heat from the ground in 1912.[22] But it was not until the late 1940s that the geothermal heat pump was successfully implemented. The earliest one was probably Robert C. Webber's home-made 2.2 kW direct-exchange system, but sources disagree as to the exact timeline of his invention.[22] J. Donald Kroeker designed the first commercial geothermal heat pump to heat the Commonwealth Building (Portland, Oregon) and demonstrated it in 1946.[23][24] Professor Carl Nielsen of Ohio State University built the first residential open loop version in his home in 1948.[25] The technology became popular in Sweden as a result of the 1973 oil crisis, and has been growing slowly in worldwide acceptance since then. The 1979 development of polybutylene pipe greatly augmented the heat pump's economic viability.[23] Since 2000, a compelling body of research has been dedicated to numerically evidence the advantages and efficiency of using CO2, alternative to water, as heat transmission fluid for geothermal energy recovery from enhanced geothermal systems (EGS) where the permeability of the underground source is enhanced by hydrofracturing.[26][27] As of 2004, there are over one million geothermal heat pumps installed worldwide providing 12 GW of thermal capacity.[28] Each year, about 80,000 units are installed in the US and 27,000 in Sweden.[28]

Economics

[edit]
Geothermal drill machine

Geothermal energy is a type of renewable energy that encourages conservation of natural resources. According to the US Environmental Protection Agency, geo-exchange systems save homeowners 30–70 percent in heating costs, and 20–50 percent in cooling costs, compared to conventional systems.[29] Geo-exchange systems also save money because they require much less maintenance. In addition to being highly reliable they are built to last for decades.

Some utilities, such as Kansas City Power and Light, offer special, lower winter rates for geothermal customers, offering even more savings.[15]

Geothermal drilling risks

[edit]
Cracks at the historic Town Hall of Staufen im Breisgau presumed due to damage from geothermal drilling

In geothermal heating projects the underground is penetrated by trenches or drillholes. As with all underground work, projects may cause problems if the geology of the area is poorly understood.

In the spring of 2007 an exploratory geothermal drilling operation was conducted to provide geothermal heat to the town hall of Staufen im Breisgau. After initially sinking a few millimeters, a process called subsidence,[30] the city center has started to rise gradually[31] causing considerable damage to buildings in the city center, affecting numerous historic houses including the town hall. It is hypothesized that the drilling perforated an anhydrite layer bringing high-pressure groundwater to come into contact with the anhydrite, which then began to expand. Currently no end to the rising process is in sight.[32][33][34] Data from the TerraSAR-X radar satellite before and after the changes confirmed the localised nature of the situation:

A geochemical process called anhydrite swelling has been confirmed as the cause of these uplifts. This is a transformation of the mineral anhydrite (anhydrous calcium sulphate) into gypsum (hydrous calcium sulphate). A pre-condition for this transformation is that the anhydrite is in contact with water, which is then stored in its crystalline structure.[35] There are other sources of potential risks, i.e.: cave enlargement or worsening of stability conditions, quality or quantity degradation of groundwater resources, Specific hazard worsening in the case of landslide-prone areas, worsening of rocky mechanical characteristics, soil and water pollution (i.e. due to antifreeze additives or polluting constructive and boring material).[36] The design defined on the base of site-specific geological, hydrogeological and environmental knowledge prevent all these potential risks.

See also

[edit]

References

[edit]
  1. ^ a b c Fridleifsson, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (2008-02-11). "The possible role and contribution of geothermal energy to the mitigation of climate change" (PDF). In O. Hohmeyer; T. Trittin (eds.). Proceedings of the IPCC Scoping Meeting on Renewable Energy Sources. Luebeck, Germany. pp. 59–80. Archived from the original (PDF) on 2017-08-08.
  2. ^ Heat Pumps, Energy Management and Conservation Handbook, 2008, pp. 9–3
  3. ^ Mean Annual Air Temperature
  4. ^ a b c Lund, John W. (June 2007), "Characteristics, Development and utilization of geothermal resources" (PDF), Geo-Heat Centre Quarterly Bulletin, vol. 28, no. 2, Klamath Falls, Oregon: Oregon Institute of Technology, pp. 1–9, ISSN 0276-1084, archived from the original (PDF) on 2010-06-17, retrieved 2009-04-16
  5. ^ Lund, John W. (2015-06-05). "Geothermal Resources Worldwide, Direct Heat Utilization of". Encyclopedia of Sustainability and Technology: 1–29. doi:10.1007/978-1-4939-2493-6_305-3. ISBN 978-1-4939-2493-6.
  6. ^ Hanania, Jordan; Sheardown, Ashley; Stenhouse, Kailyn; Donev, Jason. "Geothermal district heating". Energy education by Prof. Jason Donev and students, University of Calgary. Retrieved 2020-09-18.
  7. ^ "History of the utilization of geothermal sources of energy in Iceland". University of Rochester. Archived from the original on 2012-02-06.
  8. ^ "District Heating Systems in Idaho". Idaho Department of Water Resources. Archived from the original on 2007-01-21.
  9. ^ Brown, Brian.Klamath Falls Geothermal District Heating Systems Archived 2008-01-19 at the Wayback Machine
  10. ^ a b "Geothermal Basics Overview". Office of Energy Efficiency and Renewable Energy. Archived from the original on 2008-10-04. Retrieved 2008-10-01.
  11. ^ "EGEC Geothermal Market Report 2016 Key Findings (Sixth Edition, May 2017)" (PDF). www.egec.org. EGEC - European Geothermal Energy Council. 2017-12-13. p. 9.
  12. ^ What is Geothermal? Archived October 5, 2013, at the Wayback Machine
  13. ^ Wilfred Allan Elders, Guðmundur Ómar Friðleifsson and Bjarni Pálsson (2014). Geothermics Magazine, Vol. 49 (January 2014). Elsevier Ltd.
  14. ^ Tadayon, Saied; Tadayon, Bijan; Martin, David (2012-10-11). "Patent US20120255706 - Heat Exchange Using Underground Water System".
  15. ^ a b c Goswami, Yogi D., Kreith, Frank, Johnson, Katherine (2008), p. 9-4.
  16. ^ "Geothermal Heating and Cooling Systems". Well Management. Minnesota Department of Health. Archived from the original on 2014-02-03. Retrieved 2012-08-25.
  17. ^ Cataldi, Raffaele (August 1993). "Review of historiographic aspects of geothermal energy in the Mediterranean and Mesoamerican areas prior to the Modern Age" (PDF). Geo-Heat Centre Quarterly Bulletin. 15 (1): 13–16. ISSN 0276-1084. Archived from the original (PDF) on 2010-06-18. Retrieved 2009-11-01.
  18. ^ Bloomquist, R. Gordon (2001). Geothermal District Energy System Analysis, Design, and Development (PDF). International Summer School. International Geothermal Association. p. 213(1). Retrieved November 28, 2015. During Roman times, warm water was circulated through open trenches to provide heating for buildings and baths in Pompeii.
  19. ^ "A History of Geothermal Energy in the United States". US Department of Energy, Geothermal Technologies Program. Archived from the original on 2007-09-04. Retrieved 2007-09-10.
  20. ^ "One Hot Island: Iceland's Renewable Geothermal Power". Scientific American.
  21. ^ Dickson, Mary H.; Fanelli, Mario (February 2004). "What is Geothermal Energy?". Pisa, Italy: Istituto di Geoscienze e Georisorse. Archived from the original on 2009-10-09. Retrieved 2009-10-13.
  22. ^ a b Zogg, M. (20–22 May 2008). History of Heat Pumps: Swiss Contributions and International Milestones (PDF). Zürich, Switzerland: 9th International IEA Heat Pump Conference.
  23. ^ a b Bloomquist, R. Gordon (December 1999). "Geothermal Heat Pumps, Four Plus Decades of Experience" (PDF). Geo-Heat Centre Quarterly Bulletin. 20 (4): 13–18. ISSN 0276-1084. Archived from the original (PDF) on 2012-10-31. Retrieved 2009-03-21.
  24. ^ Kroeker, J. Donald; Chewning, Ray C. (February 1948). "A Heat Pump in an Office Building". ASHVE Transactions. 54: 221–238.
  25. ^ Gannon, Robert (February 1978). "Ground-Water Heat Pumps – Home Heating and Cooling from Your Own Well". Popular Science. 212 (2): 78–82. ISSN 0161-7370. Retrieved 2009-11-01.
  26. ^ Brown, D.W. (January 2000). "A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water" (PDF). Proceedings of Twenty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 24-26, 2000: 233–238.
  27. ^ Atrens, A.D.; Gurgenci, H.; Rudolph, V. (2009). "CO2 Thermosiphon for Competitive Geothermal Power Generation". Energy Fuels. 23 (1): 553–557. doi:10.1021/ef800601z.
  28. ^ a b Lund, J.; Sanner, B.; Rybach, L.; Curtis, R.; Hellström, G. (September 2004). "Geothermal (Ground Source) Heat Pumps, A World Overview" (PDF). Geo-Heat Centre Quarterly Bulletin. 25 (3): 1–10. ISSN 0276-1084. Archived from the original (PDF) on 2014-02-01. Retrieved 2009-03-21.
  29. ^ "Geothermal Heat Pump Consortium, Inc". Retrieved 2008-04-27.
  30. ^ The Telegraph: Geothermal probe sinks German city (March 31, 2008)
  31. ^ Lubbadeh, Jens (15 November 2008). "Eine Stadt zerreißt" [A town rips up]. Spiegel Wissenschaft (in German). Partial translation.
  32. ^ Sass, Ingo; Burbaum, Ulrich (2010). "Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations". Acta Carsologica. 39 (2): 233. doi:10.3986/ac.v39i2.96.
  33. ^ Butscher, Christoph; Huggenberger, Peter; Auckenthaler, Adrian; Bänninger, Dominik (2010). "Risikoorientierte Bewilligung von Erdwärmesonden" (PDF). Grundwasser. 16 (1): 13–24. Bibcode:2011Grund..16...13B. doi:10.1007/s00767-010-0154-5. S2CID 129598890.
  34. ^ Goldscheider, Nico; Bechtel, Timothy D. (2009). "Editors' message: The housing crisis from underground—damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany". Hydrogeology Journal. 17 (3): 491–493. Bibcode:2009HydJ...17..491G. doi:10.1007/s10040-009-0458-7.
  35. ^ "TerraSAR-X Image Of The Month: Ground Uplift Under Staufen's Old Town". www.spacemart.com. SpaceDaily. 2009-10-22. Retrieved 2009-10-23.
  36. ^ De Giorgio, Giorgio; Chieco, Michele; Limoni, Pier Paolo; Zuffianò, Livia Emanuela; Dragone, Vittoria; Romanazzi, Annarita; Pagliarulo, Rossella; Musicco, Giuseppe; Polemio, Maurizio (2020-10-19). "Improving Regulation and the Role of Natural Risk Knowledge to Promote Sustainable Low Enthalpy Geothermal Energy Utilization". Water. 12 (10): 2925. doi:10.3390/w12102925. ISSN 2073-4441.
[edit]

 

 

There are various types of air conditioners. Popular examples include: Window-mounted air conditioner (Suriname, 1955); Ceiling-mounted cassette air conditioner (China, 2023); Wall-mounted air conditioner (Japan, 2020); Ceiling-mounted console (Also called ceiling suspended) air conditioner (China, 2023); and portable air conditioner (Vatican City, 2018).

Air conditioning, often abbreviated as A/C (US) or air con (UK),[1] is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature and in some cases also controlling the humidity of internal air. Air conditioning can be achieved using a mechanical 'air conditioner' or by other methods, including passive cooling and ventilative cooling.[2][3] Air conditioning is a member of a family of systems and techniques that provide heating, ventilation, and air conditioning (HVAC).[4] Heat pumps are similar in many ways to air conditioners, but use a reversing valve to allow them both to heat and to cool an enclosed space.[5]

Air conditioners, which typically use vapor-compression refrigeration, range in size from small units used in vehicles or single rooms to massive units that can cool large buildings.[6] Air source heat pumps, which can be used for heating as well as cooling, are becoming increasingly common in cooler climates.

Air conditioners can reduce mortality rates due to higher temperature.[7] According to the International Energy Agency (IEA) 1.6 billion air conditioning units were used globally in 2016.[8] The United Nations called for the technology to be made more sustainable to mitigate climate change and for the use of alternatives, like passive cooling, evaporative cooling, selective shading, windcatchers, and better thermal insulation.

History

[edit]

Air conditioning dates back to prehistory.[9] Double-walled living quarters, with a gap between the two walls to encourage air flow, were found in the ancient city of Hamoukar, in modern Syria.[10] Ancient Egyptian buildings also used a wide variety of passive air-conditioning techniques.[11] These became widespread from the Iberian Peninsula through North Africa, the Middle East, and Northern India.[12]

Passive techniques remained widespread until the 20th century when they fell out of fashion and were replaced by powered air conditioning. Using information from engineering studies of traditional buildings, passive techniques are being revived and modified for 21st-century architectural designs.[13][12]

An array of air conditioner condenser units outside a commercial office building

Air conditioners allow the building's indoor environment to remain relatively constant, largely independent of changes in external weather conditions and internal heat loads. They also enable deep plan buildings to be created and have allowed people to live comfortably in hotter parts of the world.[14]

Development

[edit]

Preceding discoveries

[edit]

In 1558, Giambattista della Porta described a method of chilling ice to temperatures far below its freezing point by mixing it with potassium nitrate (then called "nitre") in his popular science book Natural Magic.[15][16][17] In 1620, Cornelis Drebbel demonstrated "Turning Summer into Winter" for James I of England, chilling part of the Great Hall of Westminster Abbey with an apparatus of troughs and vats.[18] Drebbel's contemporary Francis Bacon, like della Porta a believer in science communication, may not have been present at the demonstration, but in a book published later the same year, he described it as "experiment of artificial freezing" and said that "Nitre (or rather its spirit) is very cold, and hence nitre or salt when added to snow or ice intensifies the cold of the latter, the nitre by adding to its cold, but the salt by supplying activity to the cold of the snow."[15]

In 1758, Benjamin Franklin and John Hadley, a chemistry professor at the University of Cambridge, conducted experiments applying the principle of evaporation as a means to cool an object rapidly. Franklin and Hadley confirmed that the evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They experimented with the bulb of a mercury-in-glass thermometer as their object. They used a bellows to speed up the evaporation. They lowered the temperature of the thermometer bulb down to −14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (14 in) thick when they stopped the experiment upon reaching −14 °C (7 °F). Franklin concluded: "From this experiment, one may see the possibility of freezing a man to death on a warm summer's day."[19]

The 19th century included many developments in compression technology. In 1820, English scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate.[20] In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida. He hoped to eventually use his ice-making machine to regulate the temperature of buildings.[20][21] He envisioned centralized air conditioning that could cool entire cities. Gorrie was granted a patent in 1851,[22] but following the death of his main backer, he was not able to realize his invention.[23] In 1851, James Harrison created the first mechanical ice-making machine in Geelong, Australia, and was granted a patent for an ether vapor-compression refrigeration system in 1855 that produced three tons of ice per day.[24] In 1860, Harrison established a second ice company. He later entered the debate over competing against the American advantage of ice-refrigerated beef sales to the United Kingdom.[24]

First devices

[edit]
Willis Carrier, who is credited with building the first modern electrical air conditioning unit

Electricity made the development of effective units possible. In 1901, American inventor Willis H. Carrier built what is considered the first modern electrical air conditioning unit.[25][26][27][28] In 1902, he installed his first air-conditioning system, in the Sackett-Wilhelms Lithographing & Publishing Company in Brooklyn, New York.[29] His invention controlled both the temperature and humidity, which helped maintain consistent paper dimensions and ink alignment at the printing plant. Later, together with six other employees, Carrier formed The Carrier Air Conditioning Company of America, a business that in 2020 employed 53,000 people and was valued at $18.6 billion.[30][31]

In 1906, Stuart W. Cramer of Charlotte, North Carolina, was exploring ways to add moisture to the air in his textile mill. Cramer coined the term "air conditioning" in a patent claim which he filed that year, where he suggested that air conditioning was analogous to "water conditioning", then a well-known process for making textiles easier to process.[32] He combined moisture with ventilation to "condition" and change the air in the factories; thus, controlling the humidity that is necessary in textile plants. Willis Carrier adopted the term and incorporated it into the name of his company.[33]

Domestic air conditioning soon took off. In 1914, the first domestic air conditioning was installed in Minneapolis in the home of Charles Gilbert Gates. It is, however, possible that the considerable device (c. 2.1 m × 1.8 m × 6.1 m; 7 ft × 6 ft × 20 ft) was never used, as the house remained uninhabited[20] (Gates had already died in October 1913.)

In 1931, H.H. Schultz and J.Q. Sherman developed what would become the most common type of individual room air conditioner: one designed to sit on a window ledge. The units went on sale in 1932 at US$10,000 to $50,000 (the equivalent of $200,000 to $1,200,000 in 2024.)[20] A year later, the first air conditioning systems for cars were offered for sale.[34] Chrysler Motors introduced the first practical semi-portable air conditioning unit in 1935,[35] and Packard became the first automobile manufacturer to offer an air conditioning unit in its cars in 1939.[36]

Further development

[edit]

Innovations in the latter half of the 20th century allowed more ubiquitous air conditioner use. In 1945, Robert Sherman of Lynn, Massachusetts, invented a portable, in-window air conditioner that cooled, heated, humidified, dehumidified, and filtered the air.[37] The first inverter air conditioners were released in 1980–1981.[38][39]

In 1954, Ned Cole, a 1939 architecture graduate from the University of Texas at Austin, developed the first experimental "suburb" with inbuilt air conditioning in each house. 22 homes were developed on a flat, treeless track in northwest Austin, Texas, and the community was christened the 'Austin Air-Conditioned Village.' The residents were subjected to a year-long study of the effects of air conditioning led by the nation’s premier air conditioning companies, builders, and social scientists. In addition, researchers from UT’s Health Service and Psychology Department studied the effects on the "artificially cooled humans." One of the more amusing discoveries was that each family reported being troubled with scorpions, the leading theory being that scorpions sought cool, shady places. Other reported changes in lifestyle were that mothers baked more, families ate heavier foods, and they were more apt to choose hot drinks.[40][41]

Air conditioner adoption tends to increase above around $10,000 annual household income in warmer areas.[42] Global GDP growth explains around 85% of increased air condition adoption by 2050, while the remaining 15% can be explained by climate change.[42]

As of 2016 an estimated 1.6 billion air conditioning units were used worldwide, with over half of them in China and USA, and a total cooling capacity of 11,675 gigawatts.[8][43] The International Energy Agency predicted in 2018 that the number of air conditioning units would grow to around 4 billion units by 2050 and that the total cooling capacity would grow to around 23,000 GW, with the biggest increases in India and China.[8] Between 1995 and 2004, the proportion of urban households in China with air conditioners increased from 8% to 70%.[44] As of 2015, nearly 100 million homes, or about 87% of US households, had air conditioning systems.[45] In 2019, it was estimated that 90% of new single-family homes constructed in the US included air conditioning (ranging from 99% in the South to 62% in the West).[46][47]

Operation

[edit]

Operating principles

[edit]
A simple stylized diagram of the refrigeration cycle: 1) condensing coil, 2) expansion valve, 3) evaporator coil, 4) compressor

Cooling in traditional air conditioner systems is accomplished using the vapor-compression cycle, which uses a refrigerant's forced circulation and phase change between gas and liquid to transfer heat.[48][49] The vapor-compression cycle can occur within a unitary, or packaged piece of equipment; or within a chiller that is connected to terminal cooling equipment (such as a fan coil unit in an air handler) on its evaporator side and heat rejection equipment such as a cooling tower on its condenser side. An air source heat pump shares many components with an air conditioning system, but includes a reversing valve, which allows the unit to be used to heat as well as cool a space.[50]

Air conditioning equipment will reduce the absolute humidity of the air processed by the system if the surface of the evaporator coil is significantly cooler than the dew point of the surrounding air. An air conditioner designed for an occupied space will typically achieve a 30% to 60% relative humidity in the occupied space.[51]

Most modern air-conditioning systems feature a dehumidification cycle during which the compressor runs. At the same time, the fan is slowed to reduce the evaporator temperature and condense more water. A dehumidifier uses the same refrigeration cycle but incorporates both the evaporator and the condenser into the same air path; the air first passes over the evaporator coil, where it is cooled[52] and dehumidified before passing over the condenser coil, where it is warmed again before it is released back into the room.[citation needed]

Free cooling can sometimes be selected when the external air is cooler than the internal air. Therefore, the compressor does not need to be used, resulting in high cooling efficiencies for these times. This may also be combined with seasonal thermal energy storage.[53]

Heating

[edit]

Some air conditioning systems can reverse the refrigeration cycle and act as an air source heat pump, thus heating instead of cooling the indoor environment. They are also commonly referred to as "reverse cycle air conditioners". The heat pump is significantly more energy-efficient than electric resistance heating, because it moves energy from air or groundwater to the heated space and the heat from purchased electrical energy. When the heat pump is in heating mode, the indoor evaporator coil switches roles and becomes the condenser coil, producing heat. The outdoor condenser unit also switches roles to serve as the evaporator and discharges cold air (colder than the ambient outdoor air).

Most air source heat pumps become less efficient in outdoor temperatures lower than 4 °C or 40 °F.[54] This is partly because ice forms on the outdoor unit's heat exchanger coil, which blocks air flow over the coil. To compensate for this, the heat pump system must temporarily switch back into the regular air conditioning mode to switch the outdoor evaporator coil back to the condenser coil, to heat up and defrost. Therefore, some heat pump systems will have electric resistance heating in the indoor air path that is activated only in this mode to compensate for the temporary indoor air cooling, which would otherwise be uncomfortable in the winter.

Newer models have improved cold-weather performance, with efficient heating capacity down to −14 °F (−26 °C).[55][54][56] However, there is always a chance that the humidity that condenses on the heat exchanger of the outdoor unit could freeze, even in models that have improved cold-weather performance, requiring a defrosting cycle to be performed.

The icing problem becomes much more severe with lower outdoor temperatures, so heat pumps are sometimes installed in tandem with a more conventional form of heating, such as an electrical heater, a natural gas, heating oil, or wood-burning fireplace or central heating, which is used instead of or in addition to the heat pump during harsher winter temperatures. In this case, the heat pump is used efficiently during milder temperatures, and the system is switched to the conventional heat source when the outdoor temperature is lower.

Performance

[edit]

The coefficient of performance (COP) of an air conditioning system is a ratio of useful heating or cooling provided to the work required.[57][58] Higher COPs equate to lower operating costs. The COP usually exceeds 1; however, the exact value is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often graphed or averaged against expected conditions.[59] Air conditioner equipment power in the U.S. is often described in terms of "tons of refrigeration", with each approximately equal to the cooling power of one short ton (2,000 pounds (910 kg) of ice melting in a 24-hour period. The value is equal to 12,000 BTUIT per hour, or 3,517 watts.[60] Residential central air systems are usually from 1 to 5 tons (3.5 to 18 kW) in capacity.[citation needed]

The efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER), which is defined by the Air Conditioning, Heating and Refrigeration Institute in its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment.[61] A similar standard is the European seasonal energy efficiency ratio (ESEER).[citation needed]

Efficiency is strongly affected by the humidity of the air to be cooled. Dehumidifying the air before attempting to cool it can reduce subsequent cooling costs by as much as 90 percent. Thus, reducing dehumidifying costs can materially affect overall air conditioning costs.[62]

Control system

[edit]

Wireless remote control

[edit]
A wireless remote controller
The infrared transmitting LED on the remote
The infrared receiver on the air conditioner

This type of controller uses an infrared LED to relay commands from a remote control to the air conditioner. The output of the infrared LED (like that of any infrared remote) is invisible to the human eye because its wavelength is beyond the range of visible light (940 nm). This system is commonly used on mini-split air conditioners because it is simple and portable. Some window and ducted central air conditioners uses it as well.

Wired controller

[edit]
Several wired controllers (Indonesia, 2024)

A wired controller, also called a "wired thermostat," is a device that controls an air conditioner by switching heating or cooling on or off. It uses different sensors to measure temperatures and actuate control operations. Mechanical thermostats commonly use bimetallic strips, converting a temperature change into mechanical displacement, to actuate control of the air conditioner. Electronic thermostats, instead, use a thermistor or other semiconductor sensor, processing temperature change as electronic signals to control the air conditioner.

These controllers are usually used in hotel rooms because they are permanently installed into a wall and hard-wired directly into the air conditioner unit, eliminating the need for batteries.

Types

[edit]
 
Types Typical Capacity* Air supply Mounting Typical application
Mini-split small – large Direct Wall Residential
Window very small – small Direct Window Residential
Portable very small – small Direct / Ducted Floor Residential, remote areas
Ducted (individual) small – very large Ducted Ceiling Residential, commercial
Ducted (central) medium – very large Ducted Ceiling Residential, commercial
Ceiling suspended medium – large Direct Ceiling Commercial
Cassette medium – large Direct / Ducted Ceiling Commercial
Floor standing medium – large Direct / Ducted Floor Commercial
Packaged very large Direct / Ducted Floor Commercial
Packaged RTU (Rooftop Unit) very large Ducted Rooftop Commercial

* where the typical capacity is in kilowatt as follows:

  • very small: <1.5 kW
  • small: 1.5–3.5 kW
  • medium: 4.2–7.1 kW
  • large: 7.2–14 kW
  • very large: >14 kW

Mini-split and multi-split systems

[edit]
Evaporator, indoor unit, or terminal, side of a ductless split-type air conditioner

Ductless systems (often mini-split, though there are now ducted mini-split) typically supply conditioned and heated air to a single or a few rooms of a building, without ducts and in a decentralized manner.[63] Multi-zone or multi-split systems are a common application of ductless systems and allow up to eight rooms (zones or locations) to be conditioned independently from each other, each with its indoor unit and simultaneously from a single outdoor unit.

The first mini-split system was sold in 1961 by Toshiba in Japan, and the first wall-mounted mini-split air conditioner was sold in 1968 in Japan by Mitsubishi Electric, where small home sizes motivated their development. The Mitsubishi model was the first air conditioner with a cross-flow fan.[64][65][66] In 1969, the first mini-split air conditioner was sold in the US.[67] Multi-zone ductless systems were invented by Daikin in 1973, and variable refrigerant flow systems (which can be thought of as larger multi-split systems) were also invented by Daikin in 1982. Both were first sold in Japan.[68] Variable refrigerant flow systems when compared with central plant cooling from an air handler, eliminate the need for large cool air ducts, air handlers, and chillers; instead cool refrigerant is transported through much smaller pipes to the indoor units in the spaces to be conditioned, thus allowing for less space above dropped ceilings and a lower structural impact, while also allowing for more individual and independent temperature control of spaces. The outdoor and indoor units can be spread across the building.[69] Variable refrigerant flow indoor units can also be turned off individually in unused spaces.[citation needed] The lower start-up power of VRF's DC inverter compressors and their inherent DC power requirements also allow VRF solar-powered heat pumps to be run using DC-providing solar panels.

Ducted central systems

[edit]

Split-system central air conditioners consist of two heat exchangers, an outside unit (the condenser) from which heat is rejected to the environment and an internal heat exchanger (the evaporator, or Fan Coil Unit, FCU) with the piped refrigerant being circulated between the two. The FCU is then connected to the spaces to be cooled by ventilation ducts.[70] Floor standing air conditioners are similar to this type of air conditioner but sit within spaces that need cooling.

Central plant cooling

[edit]
Industrial air conditioners on top of the shopping mall Passage in Linz, Austria

Large central cooling plants may use intermediate coolant such as chilled water pumped into air handlers or fan coil units near or in the spaces to be cooled which then duct or deliver cold air into the spaces to be conditioned, rather than ducting cold air directly to these spaces from the plant, which is not done due to the low density and heat capacity of air, which would require impractically large ducts. The chilled water is cooled by chillers in the plant, which uses a refrigeration cycle to cool water, often transferring its heat to the atmosphere even in liquid-cooled chillers through the use of cooling towers. Chillers may be air- or liquid-cooled.[71][72]

Portable units

[edit]

A portable system has an indoor unit on wheels connected to an outdoor unit via flexible pipes, similar to a permanently fixed installed unit (such as a ductless split air conditioner).

Hose systems, which can be monoblock or air-to-air, are vented to the outside via air ducts. The monoblock type collects the water in a bucket or tray and stops when full. The air-to-air type re-evaporates the water, discharges it through the ducted hose, and can run continuously. Many but not all portable units draw indoor air and expel it outdoors through a single duct, negatively impacting their overall cooling efficiency.

Many portable air conditioners come with heat as well as a dehumidification function.[73]

Window unit and packaged terminal

[edit]
Through-the-wall PTAC units, University Motor Inn, Philadelphia

The packaged terminal air conditioner (PTAC), through-the-wall, and window air conditioners are similar. These units are installed on a window frame or on a wall opening. The unit usually has an internal partition separating its indoor and outdoor sides, which contain the unit's condenser and evaporator, respectively. PTAC systems may be adapted to provide heating in cold weather, either directly by using an electric strip, gas, or other heaters, or by reversing the refrigerant flow to heat the interior and draw heat from the exterior air, converting the air conditioner into a heat pump. They may be installed in a wall opening with the help of a special sleeve on the wall and a custom grill that is flush with the wall and window air conditioners can also be installed in a window, but without a custom grill.[74]

Packaged air conditioner

[edit]

Packaged air conditioners (also known as self-contained units)[75][76] are central systems that integrate into a single housing all the components of a split central system, and deliver air, possibly through ducts, to the spaces to be cooled. Depending on their construction they may be outdoors or indoors, on roofs (rooftop units),[77][78] draw the air to be conditioned from inside or outside a building and be water or air-cooled. Often, outdoor units are air-cooled while indoor units are liquid-cooled using a cooling tower.[70][79][80][81][82][83]

Types of compressors

[edit]
 
Compressor types Common applications Typical capacity Efficiency Durability Repairability
Reciprocating Refrigerator, Walk-in freezer, portable air conditioners small – large very low (small capacity)

medium (large capacity)

very low medium
Rotary vane Residential mini splits small low low easy
Scroll Commercial and central systems, VRF medium medium medium easy
Rotary screw Commercial chiller medium – large medium medium hard
Centrifugal Commercial chiller very large medium high hard
Maglev Centrifugal Commercial chiller very large high very high very hard

Reciprocating

[edit]

This compressor consists of a crankcase, crankshaft, piston rod, piston, piston ring, cylinder head and valves. [citation needed]

Scroll

[edit]

This compressor uses two interleaving scrolls to compress the refrigerant.[84] it consists of one fixed and one orbiting scrolls. This type of compressor is more efficient because it has 70 percent less moving parts than a reciprocating compressor. [citation needed]

Screw

[edit]

This compressor use two very closely meshing spiral rotors to compress the gas. The gas enters at the suction side and moves through the threads as the screws rotate. The meshing rotors force the gas through the compressor, and the gas exits at the end of the screws. The working area is the inter-lobe volume between the male and female rotors. It is larger at the intake end, and decreases along the length of the rotors until the exhaust port. This change in volume is the compression. [citation needed]

Capacity modulation technologies

[edit]

There are several ways to modulate the cooling capacity in refrigeration or air conditioning and heating systems. The most common in air conditioning are: on-off cycling, hot gas bypass, use or not of liquid injection, manifold configurations of multiple compressors, mechanical modulation (also called digital), and inverter technology. [citation needed]

Hot gas bypass

[edit]

Hot gas bypass involves injecting a quantity of gas from discharge to the suction side. The compressor will keep operating at the same speed, but due to the bypass, the refrigerant mass flow circulating with the system is reduced, and thus the cooling capacity. This naturally causes the compressor to run uselessly during the periods when the bypass is operating. The turn down capacity varies between 0 and 100%.[85]

Manifold configurations

[edit]

Several compressors can be installed in the system to provide the peak cooling capacity. Each compressor can run or not in order to stage the cooling capacity of the unit. The turn down capacity is either 0/33/66 or 100% for a trio configuration and either 0/50 or 100% for a tandem.[citation needed]

Mechanically modulated compressor

[edit]

This internal mechanical capacity modulation is based on periodic compression process with a control valve, the two scroll set move apart stopping the compression for a given time period. This method varies refrigerant flow by changing the average time of compression, but not the actual speed of the motor. Despite an excellent turndown ratio – from 10 to 100% of the cooling capacity, mechanically modulated scrolls have high energy consumption as the motor continuously runs.[citation needed]

Variable-speed compressor

[edit]

This system uses a variable-frequency drive (also called an Inverter) to control the speed of the compressor. The refrigerant flow rate is changed by the change in the speed of the compressor. The turn down ratio depends on the system configuration and manufacturer. It modulates from 15 or 25% up to 100% at full capacity with a single inverter from 12 to 100% with a hybrid tandem. This method is the most efficient way to modulate an air conditioner's capacity. It is up to 58% more efficient than a fixed speed system.[citation needed]

Impact

[edit]

Health effects

[edit]
Rooftop condenser unit fitted on top of an Osaka Municipal Subway 10 series subway carriage. Air conditioning has become increasingly prevalent on public transport vehicles as a form of climate control, and to ensure passenger comfort and drivers' occupational safety and health.

In hot weather, air conditioning can prevent heat stroke, dehydration due to excessive sweating, electrolyte imbalance, kidney failure, and other issues due to hyperthermia.[8][86] Heat waves are the most lethal type of weather phenomenon in the United States.[87][88] A 2020 study found that areas with lower use of air conditioning correlated with higher rates of heat-related mortality and hospitalizations.[89] The August 2003 France heatwave resulted in approximately 15,000 deaths, where 80% of the victims were over 75 years old. In response, the French government required all retirement homes to have at least one air-conditioned room at 25 °C (77 °F) per floor during heatwaves.[8]

Air conditioning (including filtration, humidification, cooling and disinfection) can be used to provide a clean, safe, hypoallergenic atmosphere in hospital operating rooms and other environments where proper atmosphere is critical to patient safety and well-being. It is sometimes recommended for home use by people with allergies, especially mold.[90][91] However, poorly maintained water cooling towers can promote the growth and spread of microorganisms such as Legionella pneumophila, the infectious agent responsible for Legionnaires' disease. As long as the cooling tower is kept clean (usually by means of a chlorine treatment), these health hazards can be avoided or reduced. The state of New York has codified requirements for registration, maintenance, and testing of cooling towers to protect against Legionella.[92]

Economic effects

[edit]

First designed to benefit targeted industries such as the press as well as large factories, the invention quickly spread to public agencies and administrations with studies with claims of increased productivity close to 24% in places equipped with air conditioning.[93]

Air conditioning caused various shifts in demography, notably that of the United States starting from the 1970s. In the US, the birth rate was lower in the spring than during other seasons until the 1970s but this difference then declined since then.[94] As of 2007, the Sun Belt contained 30% of the total US population while it was inhabited by 24% of Americans at the beginning of the 20th century.[95] Moreover, the summer mortality rate in the US, which had been higher in regions subject to a heat wave during the summer, also evened out.[7]

The spread of the use of air conditioning acts as a main driver for the growth of global demand of electricity.[96] According to a 2018 report from the International Energy Agency (IEA), it was revealed that the energy consumption for cooling in the United States, involving 328 million Americans, surpasses the combined energy consumption of 4.4 billion people in Africa, Latin America, the Middle East, and Asia (excluding China).[8] A 2020 survey found that an estimated 88% of all US households use AC, increasing to 93% when solely looking at homes built between 2010 and 2020.[97]

Environmental effects

[edit]
Air conditioner farm in the facade of a building in Singapore

Space cooling including air conditioning accounted globally for 2021 terawatt-hours of energy usage in 2016 with around 99% in the form of electricity, according to a 2018 report on air-conditioning efficiency by the International Energy Agency.[8] The report predicts an increase of electricity usage due to space cooling to around 6200 TWh by 2050,[8][98] and that with the progress currently seen, greenhouse gas emissions attributable to space cooling will double: 1,135 million tons (2016) to 2,070 million tons.[8] There is some push to increase the energy efficiency of air conditioners. United Nations Environment Programme (UNEP) and the IEA found that if air conditioners could be twice as effective as now, 460 billion tons of GHG could be cut over 40 years.[99] The UNEP and IEA also recommended legislation to decrease the use of hydrofluorocarbons, better building insulation, and more sustainable temperature-controlled food supply chains going forward.[99]

Refrigerants have also caused and continue to cause serious environmental issues, including ozone depletion and climate change, as several countries have not yet ratified the Kigali Amendment to reduce the consumption and production of hydrofluorocarbons.[100] CFCs and HCFCs refrigerants such as R-12 and R-22, respectively, used within air conditioners have caused damage to the ozone layer,[101] and hydrofluorocarbon refrigerants such as R-410A and R-404A, which were designed to replace CFCs and HCFCs, are instead exacerbating climate change.[102] Both issues happen due to the venting of refrigerant to the atmosphere, such as during repairs. HFO refrigerants, used in some if not most new equipment, solve both issues with an ozone damage potential (ODP) of zero and a much lower global warming potential (GWP) in the single or double digits vs. the three or four digits of hydrofluorocarbons.[103]

Hydrofluorocarbons would have raised global temperatures by around 0.3–0.5 °C (0.5–0.9 °F) by 2100 without the Kigali Amendment. With the Kigali Amendment, the increase of global temperatures by 2100 due to hydrofluorocarbons is predicted to be around 0.06 °C (0.1 °F).[104]

Alternatives to continual air conditioning include passive cooling, passive solar cooling, natural ventilation, operating shades to reduce solar gain, using trees, architectural shades, windows (and using window coatings) to reduce solar gain.[citation needed]

Social effects

[edit]

Socioeconomic groups with a household income below around $10,000 tend to have a low air conditioning adoption,[42] which worsens heat-related mortality.[7] The lack of cooling can be hazardous, as areas with lower use of air conditioning correlate with higher rates of heat-related mortality and hospitalizations.[89] Premature mortality in NYC is projected to grow between 47% and 95% in 30 years, with lower-income and vulnerable populations most at risk.[89] Studies on the correlation between heat-related mortality and hospitalizations and living in low socioeconomic locations can be traced in Phoenix, Arizona,[105] Hong Kong,[106] China,[106] Japan,[107] and Italy.[108][109] Additionally, costs concerning health care can act as another barrier, as the lack of private health insurance during a 2009 heat wave in Australia, was associated with heat-related hospitalization.[109]

Disparities in socioeconomic status and access to air conditioning are connected by some to institutionalized racism, which leads to the association of specific marginalized communities with lower economic status, poorer health, residing in hotter neighborhoods, engaging in physically demanding labor, and experiencing limited access to cooling technologies such as air conditioning.[109] A study overlooking Chicago, Illinois, Detroit, and Michigan found that black households were half as likely to have central air conditioning units when compared to their white counterparts.[110] Especially in cities, Redlining creates heat islands, increasing temperatures in certain parts of the city.[109] This is due to materials heat-absorbing building materials and pavements and lack of vegetation and shade coverage.[111] There have been initiatives that provide cooling solutions to low-income communities, such as public cooling spaces.[8][111]

Other techniques

[edit]

Buildings designed with passive air conditioning are generally less expensive to construct and maintain than buildings with conventional HVAC systems with lower energy demands.[112] While tens of air changes per hour, and cooling of tens of degrees, can be achieved with passive methods, site-specific microclimate must be taken into account, complicating building design.[12]

Many techniques can be used to increase comfort and reduce the temperature in buildings. These include evaporative cooling, selective shading, wind, thermal convection, and heat storage.[113]

Passive ventilation

[edit]
The ventilation system of a regular earthship
Dogtrot houses are designed to maximise natural ventilation.
A roof turbine ventilator, colloquially known as a 'Whirly Bird' is an application of wind driven ventilation.

Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.

There are two types of natural ventilation occurring in buildings: wind driven ventilation and buoyancy-driven ventilation. Wind driven ventilation arises from the different pressures created by wind around a building or structure, and openings being formed on the perimeter which then permit flow through the building. Buoyancy-driven ventilation occurs as a result of the directional buoyancy force that results from temperature differences between the interior and exterior.[114]

Since the internal heat gains which create temperature differences between the interior and exterior are created by natural processes, including the heat from people, and wind effects are variable, naturally ventilated buildings are sometimes called "breathing buildings".

Passive cooling

[edit]
 
A traditional Iranian solar cooling design using a wind tower

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption.[115][116] This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling).[117]

Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g. building envelope), rather than mechanical systems to dissipate heat.[118] Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the earth/soil.

Passive cooling is an important tool for design of buildings for climate change adaptation – reducing dependency on energy-intensive air conditioning in warming environments.[119][120]
A pair of short windcatchers (malqaf) used in traditional architecture; wind is forced down on the windward side and leaves on the leeward side (cross-ventilation). In the absence of wind, the circulation can be driven with evaporative cooling in the inlet (which is also designed to catch dust). In the center, a shuksheika (roof lantern vent), used to shade the qa'a below while allowing hot air rise out of it (stack effect).[11]

Daytime radiative cooling

[edit]
Passive daytime radiative cooling (PDRC) surfaces are high in solar reflectance and heat emittance, cooling with zero energy use or pollution.[121]

Passive daytime radiative cooling (PDRC) surfaces reflect incoming solar radiation and heat back into outer space through the infrared window for cooling during the daytime. Daytime radiative cooling became possible with the ability to suppress solar heating using photonic structures, which emerged through a study by Raman et al. (2014).[122] PDRCs can come in a variety of forms, including paint coatings and films, that are designed to be high in solar reflectance and thermal emittance.[121][123]

PDRC applications on building roofs and envelopes have demonstrated significant decreases in energy consumption and costs.[123] In suburban single-family residential areas, PDRC application on roofs can potentially lower energy costs by 26% to 46%.[124] PDRCs are predicted to show a market size of ~$27 billion for indoor space cooling by 2025 and have undergone a surge in research and development since the 2010s.[125][126]

Fans

[edit]

Hand fans have existed since prehistory. Large human-powered fans built into buildings include the punkah.

The 2nd-century Chinese inventor Ding Huan of the Han dynasty invented a rotary fan for air conditioning, with seven wheels 3 m (10 ft) in diameter and manually powered by prisoners.[127]: 99, 151, 233  In 747, Emperor Xuanzong (r. 712–762) of the Tang dynasty (618–907) had the Cool Hall (Liang Dian 涼殿) built in the imperial palace, which the Tang Yulin describes as having water-powered fan wheels for air conditioning as well as rising jet streams of water from fountains. During the subsequent Song dynasty (960–1279), written sources mentioned the air conditioning rotary fan as even more widely used.[127]: 134, 151 

Thermal buffering

[edit]

In areas that are cold at night or in winter, heat storage is used. Heat may be stored in earth or masonry; air is drawn past the masonry to heat or cool it.[13]

In areas that are below freezing at night in winter, snow and ice can be collected and stored in ice houses for later use in cooling.[13] This technique is over 3,700 years old in the Middle East.[128] Harvesting outdoor ice during winter and transporting and storing for use in summer was practiced by wealthy Europeans in the early 1600s,[15] and became popular in Europe and the Americas towards the end of the 1600s.[129] This practice was replaced by mechanical compression-cycle icemakers.

Evaporative cooling

[edit]
An evaporative cooler

In dry, hot climates, the evaporative cooling effect may be used by placing water at the air intake, such that the draft draws air over water and then into the house. For this reason, it is sometimes said that the fountain, in the architecture of hot, arid climates, is like the fireplace in the architecture of cold climates.[11] Evaporative cooling also makes the air more humid, which can be beneficial in a dry desert climate.[130]

Evaporative coolers tend to feel as if they are not working during times of high humidity, when there is not much dry air with which the coolers can work to make the air as cool as possible for dwelling occupants. Unlike other types of air conditioners, evaporative coolers rely on the outside air to be channeled through cooler pads that cool the air before it reaches the inside of a house through its air duct system; this cooled outside air must be allowed to push the warmer air within the house out through an exhaust opening such as an open door or window.[131]

See also

[edit]

References

[edit]
  1. ^ "Air Con". Cambridge Dictionary. Archived from the original on May 3, 2022. Retrieved January 6, 2023.
  2. ^ Dissertation Abstracts International: The humanities and social sciences. A. University Microfilms. 2005. p. 3600.
  3. ^ 1993 ASHRAE Handbook: Fundamentals. ASHRAE. 1993. ISBN 978-0-910110-97-6.
  4. ^ Enteria, Napoleon; Sawachi, Takao; Saito, Kiyoshi (January 31, 2023). Variable Refrigerant Flow Systems: Advances and Applications of VRF. Springer Nature. p. 46. ISBN 978-981-19-6833-4.
  5. ^ Agencies, United States Congress House Committee on Appropriations Subcommittee on Dept of the Interior and Related (1988). Department of the Interior and Related Agencies Appropriations for 1989: Testimony of public witnesses, energy programs, Institute of Museum Services, National Endowment for the Arts, National Endowment for the Humanities. U.S. Government Printing Office. p. 629.
  6. ^ "Earth Tubes: Providing the freshest possible air to your building". Earth Rangers Centre for Sustainable Technology Showcase. Archived from the original on January 28, 2021. Retrieved May 12, 2021.
  7. ^ a b c Barreca, Alan; Clay, Karen; Deschenes, Olivier; Greenstone, Michael; Shapiro, Joseph S. (February 2016). "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century". Journal of Political Economy. 124 (1): 105–159. doi:10.1086/684582.
  8. ^ a b c d e f g h i j International Energy Agency (May 15, 2018). The Future of Cooling - Opportunities for energy-efficient air conditioning (PDF) (Report). Archived (PDF) from the original on June 26, 2024. Retrieved July 1, 2024.
  9. ^ Laub, Julian M. (1963). Air Conditioning & Heating Practice. Holt, Rinehart and Winston. p. 367. ISBN 978-0-03-011225-6.
  10. ^ "Air-conditioning found at 'oldest city in the world'". The Independent. June 24, 2000. Archived from the original on December 8, 2023. Retrieved December 9, 2023.
  11. ^ a b c Mohamed, Mady A.A. (January 2010). Lehmann, S.; Waer, H.A.; Al-Qawasmi, J. (eds.). Traditional Ways of Dealing with Climate in Egypt. The Seventh International Conference of Sustainable Architecture and Urban Development (SAUD 2010). Amman, Jordan: The Center for the Study of Architecture in Arab Region (CSAAR Press). pp. 247–266. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
  12. ^ a b c Ford, Brian (September 2001). "Passive downdraught evaporative cooling: principles and practice". Architectural Research Quarterly. 5 (3): 271–280. doi:10.1017/S1359135501001312.
  13. ^ a b c Attia, Shady; Herde, André de (June 22–24, 2009). Designing the Malqaf for Summer Cooling in Low-Rise Housing, an Experimental Study. 26th Conference on Passive and Low Energy Architecture (PLEA2009). Quebec City. Archived from the original on May 13, 2021. Retrieved May 12, 2021 – via ResearchGate.
  14. ^ "Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools". US EPA. October 17, 2014. Archived from the original on July 5, 2022. Retrieved July 5, 2022.
  15. ^ a b c Shachtman, Tom (1999). "Winter in Summer". Absolute zero and the conquest of cold. Boston: Houghton Mifflin Harcourt. ISBN 978-0395938881. OCLC 421754998. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
  16. ^ Porta, Giambattista Della (1584). Magiae naturalis (PDF). London. LCCN 09023451. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021. In our method I shall observe what our ancestors have said; then I shall show by my own experience, whether they be true or false
  17. ^ Beck, Leonard D. (October 1974). "Things Magical in the collections of the Rare Book and Special Collections Division" (PDF). Library of Congress Quarterly Journal. 31: 208–234. Archived (PDF) from the original on March 24, 2021. Retrieved May 12, 2021.
  18. ^ Laszlo, Pierre (2001). Salt: Grain of Life. Columbia University Press. p. 117. ISBN 978-0231121989. OCLC 785781471. Cornelius Drebbel air conditioning.
  19. ^ Franklin, Benjamin (June 17, 1758). "The Montgomery Family: An historical and photographic perspective". Letter to John Lining. Archived from the original on February 25, 2021. Retrieved May 12, 2021.
  20. ^ a b c d Green, Amanda (January 1, 2015). "The Cool History of the Air Conditioner". Popular Mechanics. Archived from the original on April 10, 2021. Retrieved May 12, 2021.
  21. ^ "John Gorrie". Encyclopædia Britannica. September 29, 2020. Archived from the original on March 13, 2021. Retrieved May 12, 2021.
  22. ^ Gorrie, John "Improved process for the artificial production of ice" U.S. Patent no. 8080 (Issued: May 6, 1851).
  23. ^ Wright, E. Lynne (2009). It Happened in Florida: Remarkable Events That Shaped History. Rowman & Littlefield. pp. 13–. ISBN 978-0762761692.
  24. ^ a b Bruce-Wallace, L. G. (1966). "Harrison, James (1816–1893)". Australian Dictionary of Biography. Vol. 1. Canberra: National Centre of Biography, Australian National University. ISBN 978-0-522-84459-7. ISSN 1833-7538. OCLC 70677943. Retrieved May 12, 2021.
  25. ^ Palermo, Elizabeth (May 1, 2014). "Who Invented Air Conditioning?". livescience.com. Archived from the original on January 16, 2021. Retrieved May 12, 2021.
  26. ^ Varrasi, John (June 6, 2011). "Global Cooling: The History of Air Conditioning". American Society of Mechanical Engineers. Archived from the original on March 8, 2021. Retrieved May 12, 2021.
  27. ^ Simha, R. V. (February 2012). "Willis H Carrier". Resonance. 17 (2): 117–138. doi:10.1007/s12045-012-0014-y. ISSN 0971-8044. S2CID 116582893.
  28. ^ Gulledge III, Charles; Knight, Dennis (February 11, 2016). "Heating, Ventilating, Air-Conditioning, And Refrigerating Engineering". National Institute of Building Sciences. Archived from the original on April 20, 2021. Retrieved May 12, 2021. Though he did not actually invent air-conditioning nor did he take the first documented scientific approach to applying it, Willis Carrier is credited with integrating the scientific method, engineering, and business of this developing technology and creating the industry we know today as air-conditioning.
  29. ^ "Willis Carrier – 1876–1902". Carrier Global. Archived from the original on February 27, 2021. Retrieved May 12, 2021.
  30. ^ "Carrier Reports First Quarter 2020 Earnings". Carrier Global (Press release). May 8, 2020. Archived from the original on January 24, 2021. Retrieved May 12, 2021.
  31. ^ "Carrier Becomes Independent, Publicly Traded Company, Begins Trading on New York Stock Exchange". Carrier Global (Press release). April 3, 2020. Archived from the original on February 25, 2021. Retrieved May 12, 2021.
  32. ^ Cramer, Stuart W. "Humidifying and air conditioning apparatus" U.S. Patent no. 852,823 (filed: April 18, 1906; issued: May 7, 1907).
    • See also: Cramer, Stuart W. (1906) "Recent development in air conditioning" in: Proceedings of the Tenth Annual Convention of the American Cotton Manufacturers Association Held at Asheville, North Carolina May 16–17, 1906. Charlotte, North Carolina, USA: Queen City Publishing Co. pp. 182-211.
  33. ^ US patent US808897A, Carrier, Willis H., "Apparatus for treating air", published January 2, 1906, issued January 2, 1906 and Buffalo Forge Company "No. 808,897 Patented Jan. 2, 1906: H. W. Carrier: Apparatus for Treating Air" (PDF). Archived (PDF) from the original on December 5, 2019. Retrieved May 12, 2021.
  34. ^ "First Air-Conditioned Auto". Popular Science. Vol. 123, no. 5. November 1933. p. 30. ISSN 0161-7370. Archived from the original on April 26, 2021. Retrieved May 12, 2021.
  35. ^ "Room-size air conditioner fits under window sill". Popular Mechanics. Vol. 63, no. 6. June 1935. p. 885. ISSN 0032-4558. Archived from the original on November 22, 2016. Retrieved May 12, 2021.
  36. ^ "Michigan Fast Facts and Trivia". 50states.com. Archived from the original on June 18, 2017. Retrieved May 12, 2021.
  37. ^ US patent US2433960A, Sherman, Robert S., "Air conditioning apparatus", published January 6, 1948, issued January 6, 1948 
  38. ^ "IEEE milestones (39) Inverter Air Conditioners, 1980–1981" (PDF). March 2021. Archived (PDF) from the original on January 21, 2024. Retrieved February 9, 2024.
  39. ^ "Inverter Air Conditioners, 1980–1981 IEEE Milestone Celebration Ceremony" (PDF). March 16, 2021. Archived (PDF) from the original on January 21, 2024. Retrieved February 9, 2024.
  40. ^ Seale, Avrel (August 7, 2023). "Texas alumnus and his alma mater central to air-conditioned homes". UT News. Retrieved November 13, 2024.
  41. ^ "Air Conditioned Village". Atlas Obscura. Retrieved November 13, 2024.
  42. ^ a b c Davis, Lucas; Gertler, Paul; Jarvis, Stephen; Wolfram, Catherine (July 2021). "Air conditioning and global inequality". Global Environmental Change. 69: 102299. Bibcode:2021GEC....6902299D. doi:10.1016/j.gloenvcha.2021.102299.
  43. ^ Pierre-Louis, Kendra (May 15, 2018). "The World Wants Air-Conditioning. That Could Warm the World". The New York Times. Archived from the original on February 16, 2021. Retrieved May 12, 2021.
  44. ^ Carroll, Rory (October 26, 2015). "How America became addicted to air conditioning". The Guardian. Los Angeles. Archived from the original on March 13, 2021. Retrieved May 12, 2021.
  45. ^ Lester, Paul (July 20, 2015). "History of Air Conditioning". United States Department of Energy. Archived from the original on June 5, 2020. Retrieved May 12, 2021.
  46. ^ Cornish, Cheryl; Cooper, Stephen; Jenkins, Salima. Characteristics of New Housing (Report). United States Census Bureau. Archived from the original on April 11, 2021. Retrieved May 12, 2021.
  47. ^ "Central Air Conditioning Buying Guide". Consumer Reports. March 3, 2021. Archived from the original on May 9, 2021. Retrieved May 12, 2021.
  48. ^ Petchers, Neil (2003). Combined Heating, Cooling & Power Handbook: Technologies & Applications : an Integrated Approach to Energy Resource Optimization. The Fairmont Press. p. 737. ISBN 978-0-88173-433-1.
  49. ^ Krarti, Moncef (December 1, 2020). Energy Audit of Building Systems: An Engineering Approach, Third Edition. CRC Press. p. 370. ISBN 978-1-000-25967-4.
  50. ^ "What is a Reversing Valve". Samsung India. Archived from the original on February 22, 2019. Retrieved May 12, 2021.
  51. ^ "Humidity and Comfort" (PDF). DriSteem. Archived from the original (PDF) on May 16, 2018. Retrieved May 12, 2021.
  52. ^ Perryman, Oliver (April 19, 2021). "Dehumidifier vs Air Conditioning". Dehumidifier Critic. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
  53. ^ Snijders, Aart L. (July 30, 2008). "Aquifer Thermal Energy Storage (ATES) Technology Development and Major Applications in Europe" (PDF). Toronto and Region Conservation Authority. Arnhem: IFTech International. Archived (PDF) from the original on March 8, 2021. Retrieved May 12, 2021.
  54. ^ a b "Cold Climate Air Source Heat Pump" (PDF). Minnesota Department of Commerce, Division of Energy Resources. Archived (PDF) from the original on January 2, 2022. Retrieved March 29, 2022.
  55. ^ "Even in Frigid Temperatures, Air-Source Heat Pumps Keep Homes Warm From Alaska Coast to U.S. Mass Market". nrel.gov. Archived from the original on April 10, 2022. Retrieved March 29, 2022.
  56. ^ "Heat Pumps: A Practical Solution for Cold Climates". RMI. December 10, 2020. Archived from the original on March 31, 2022. Retrieved March 28, 2022.
  57. ^ "TEM Instruction Sheet" (PDF). TE Technology. March 14, 2012. Archived from the original (PDF) on January 24, 2013. Retrieved May 12, 2021.
  58. ^ "Coefficient of Performance (COP) heat pumps". Grundfos. November 18, 2020. Archived from the original on May 3, 2021. Retrieved May 12, 2021.
  59. ^ "Unpotted HP-199-1.4-0.8 at a hot-side temperature of 25 °C" (PDF). TE Technology. Archived from the original (PDF) on January 7, 2009. Retrieved February 9, 2024.
  60. ^ Newell, David B.; Tiesinga, Eite, eds. (August 2019). The International System of Units (SI) (PDF). National Institute of Standards and Technology. doi:10.6028/NIST.SP.330-2019. Archived (PDF) from the original on April 22, 2021. Retrieved May 13, 2021.
  61. ^ ANSI/AHRI 210/240-2008: 2008 Standard for Performance Rating of Unitary Air-Conditioning & Air-Source Heat Pump Equipment (PDF). Air Conditioning, Heating and Refrigeration Institute. 2012. Archived from the original on March 29, 2018. Retrieved May 13, 2021.
  62. ^ Baraniuk, Chris. "Cutting-Edge Technology Could Massively Reduce the Amount of Energy Used for Air Conditioning". Wired. ISSN 1059-1028. Retrieved July 18, 2024.
  63. ^ "M-Series Contractor Guide" (PDF). Mitsubishipro.com. p. 19. Archived (PDF) from the original on March 18, 2021. Retrieved May 12, 2021.
  64. ^ "エアコンの歴史とヒミツ | 調べよう家電と省エネ | キッズ版 省エネ家電 de スマートライフ(一般財団法人 家電製品協会) 学ぼう!スマートライフ". shouene-kaden.net. Archived from the original on September 7, 2022. Retrieved January 21, 2024.
  65. ^ "Air conditioner | History". Toshiba Carrier. April 2016. Archived from the original on March 9, 2021. Retrieved May 12, 2021.
  66. ^ "1920s–1970s | History". Mitsubishi Electric. Archived from the original on March 8, 2021. Retrieved May 12, 2021.
  67. ^ Wagner, Gerry (November 30, 2021). "The Duct Free Zone: History of the Mini Split". HPAC Magazine. Retrieved February 9, 2024.
  68. ^ "History of Daikin Innovation". Daikin. Archived from the original on June 5, 2020. Retrieved May 12, 2021.
  69. ^ Feit, Justin (December 20, 2017). "The Emergence of VRF as a Viable HVAC Option". buildings.com. Archived from the original on December 3, 2020. Retrieved May 12, 2021.
  70. ^ a b "Central Air Conditioning". United States Department of Energy. Archived from the original on January 30, 2021. Retrieved May 12, 2021.
  71. ^ Kreith, Frank; Wang, Shan K.; Norton, Paul (April 20, 2018). Air Conditioning and Refrigeration Engineering. CRC Press. ISBN 978-1-351-46783-4.
  72. ^ Wang, Shan K. (November 7, 2000). Handbook of Air Conditioning and Refrigeration. McGraw-Hill Education. ISBN 978-0-07-068167-5.
  73. ^ Hleborodova, Veronika (August 14, 2018). "Portable Vs Split System Air Conditioning | Pros & Cons". Canstar Blue. Archived from the original on March 9, 2021. Retrieved May 12, 2021.
  74. ^ Kamins, Toni L. (July 15, 2013). "Through-the-Wall Versus PTAC Air Conditioners: A Guide for New Yorkers". Brick Underground. Archived from the original on January 15, 2021. Retrieved May 12, 2021.
  75. ^ "Self-Contained Air Conditioning Systems". Daikin Applied Americas. 2015. Archived from the original on October 30, 2020. Retrieved May 12, 2021.
  76. ^ "LSWU/LSWD Vertical Water-Cooled Self-Contained Unit Engineering Guide" (PDF). Johnson Controls. April 6, 2018. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
  77. ^ "Packaged Rooftop Unit" (PDF). Carrier Global. 2016. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
  78. ^ "Packaged Rooftop Air Conditioners" (PDF). Trane Technologies. November 2006. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
  79. ^ "What is Packaged Air Conditioner? Types of Packged Air Condtioners". Bright Hub Engineering. January 13, 2010. Archived from the original on February 22, 2018. Retrieved May 12, 2021.
  80. ^ Evans, Paul (November 11, 2018). "RTU Rooftop Units explained". The Engineering Mindset. Archived from the original on January 15, 2021. Retrieved May 12, 2021.
  81. ^ "water-cooled – Johnson Supply". studylib.net. 2000. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
  82. ^ "Water Cooled Packaged Air Conditioners" (PDF). Japan: Daikin. May 2, 2003. Archived (PDF) from the original on June 19, 2018. Retrieved May 12, 2021.
  83. ^ "Water Cooled Packaged Unit" (PDF). Daikin. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
  84. ^ Lun, Y. H. Venus; Tung, S. L. Dennis (November 13, 2019). Heat Pumps for Sustainable Heating and Cooling. Springer Nature. p. 25. ISBN 978-3-030-31387-6.
  85. ^ Ghanbariannaeeni, Ali; Ghazanfarihashemi, Ghazalehsadat (June 2012). "Bypass Method For Recip Compressor Capacity Control". Pipeline and Gas Journal. 239 (6). Archived from the original on August 12, 2014. Retrieved February 9, 2024.
  86. ^ "Heat Stroke (Hyperthermia)". Harvard Health. January 2, 2019. Archived from the original on January 29, 2021. Retrieved May 13, 2021.
  87. ^ "Weather Related Fatality and Injury Statistics". National Weather Service. 2021. Archived from the original on August 24, 2022. Retrieved August 24, 2022.
  88. ^ "Extreme Weather: A Guide to Surviving Flash Floods, Tornadoes, Hurricanes, Heat Waves, Snowstorms Tsunamis and Other Natural Disasters". Reference Reviews. 26 (8): 41. October 19, 2012. doi:10.1108/09504121211278322. ISSN 0950-4125. Archived from the original on January 21, 2024. Retrieved December 9, 2023.
  89. ^ a b c Gamarro, Harold; Ortiz, Luis; González, Jorge E. (August 1, 2020). "Adapting to Extreme Heat: Social, Atmospheric, and Infrastructure Impacts of Air-Conditioning in Megacities—The Case of New York City". Journal of Engineering for Sustainable Buildings and Cities. 1 (3). doi:10.1115/1.4048175. ISSN 2642-6641. S2CID 222121944.
  90. ^ Spiegelman, Jay; Friedman, Herman; Blumstein, George I. (September 1, 1963). "The effects of central air conditioning on pollen, mold, and bacterial concentrations". Journal of Allergy. 34 (5): 426–431. doi:10.1016/0021-8707(63)90007-8. ISSN 0021-8707. PMID 14066385.
  91. ^ Portnoy, Jay M.; Jara, David (February 1, 2015). "Mold allergy revisited". Annals of Allergy, Asthma & Immunology. 114 (2): 83–89. doi:10.1016/j.anai.2014.10.004. ISSN 1081-1206. PMID 25624128.
  92. ^ "Subpart 4-1 – Cooling Towers". New York Codes, Rules and Regulations. June 7, 2016. Archived from the original on May 13, 2021. Retrieved May 13, 2021.
  93. ^ Nordhaus, William D. (February 10, 2010). "Geography and macroeconomics: New data and new findings". Proceedings of the National Academy of Sciences. 103 (10): 3510–3517. doi:10.1073/pnas.0509842103. ISSN 0027-8424. PMC 1363683. PMID 16473945.
  94. ^ Barreca, Alan; Deschenes, Olivier; Guldi, Melanie (2018). "Maybe next month? Temperature shocks and dynamic adjustments in birth rates". Demography. 55 (4): 1269–1293. doi:10.1007/s13524-018-0690-7. PMC 7457515. PMID 29968058.
  95. ^ Glaeser, Edward L.; Tobio, Kristina (January 2008). "The Rise of the Sunbelt". Southern Economic Journal. 74 (3): 609–643. doi:10.1002/j.2325-8012.2008.tb00856.x.
  96. ^ Sherman, Peter; Lin, Haiyang; McElroy, Michael (2018). "Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries". Energy and Buildings. 268: 112198. doi:10.1016/j.enbuild.2022.112198. ISSN 0378-7788. S2CID 248979815.
  97. ^ Air Filters Used in Air Conditioning and General Ventilation Part 1: Methods of Test for Atmospheric Dust Spot Efficiency and Synthetic Dust Weight Arrestance (Withdrawn Standard). British Standards Institution. March 29, 1985. BS 6540-1:1985.
  98. ^ Mutschler, Robin; Rüdisüli, Martin; Heer, Philipp; Eggimann, Sven (April 15, 2021). "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake". Applied Energy. 288: 116636. Bibcode:2021ApEn..28816636M. doi:10.1016/j.apenergy.2021.116636. ISSN 0306-2619.
  99. ^ a b "Climate-friendly cooling could cut years of Greenhouse Gas Emissions and save US$ trillions: UN". Climate Change and Law Collection. doi:10.1163/9789004322714_cclc_2020-0252-0973.
  100. ^ Gerretsen, Isabelle (December 8, 2020). "How your fridge is heating up the planet". BBC Future. Archived from the original on May 10, 2021. Retrieved May 13, 2021.
  101. ^ Encyclopedia of Energy: Ph-S. Elsevier. 2004. ISBN 978-0121764821.
  102. ^ Corberan, J.M. (2016). "New trends and developments in ground-source heat pumps". Advances in Ground-Source Heat Pump Systems. pp. 359–385. doi:10.1016/B978-0-08-100311-4.00013-3. ISBN 978-0-08-100311-4.
  103. ^ Roselli, Carlo; Sasso, Maurizio (2021). Geothermal Energy Utilization and Technologies 2020. MDPI. ISBN 978-3036507040.
  104. ^ "Cooling Emissions and Policy Synthesis Report: Benefits of cooling efficiency and the Kigali Amendment, United Nations Environment Programme - International Energy Agency, 2020" (PDF).
  105. ^ Harlan, Sharon L.; Declet-Barreto, Juan H.; Stefanov, William L.; Petitti, Diana B. (February 2013). "Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona". Environmental Health Perspectives. 121 (2): 197–204. Bibcode:2013EnvHP.121..197H. doi:10.1289/ehp.1104625. ISSN 0091-6765. PMC 3569676. PMID 23164621.
  106. ^ a b Chan, Emily Ying Yang; Goggins, William B; Kim, Jacqueline Jakyoung; Griffiths, Sian M (April 2012). "A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong". Journal of Epidemiology and Community Health. 66 (4): 322–327. doi:10.1136/jech.2008.085167. ISSN 0143-005X. PMC 3292716. PMID 20974839.
  107. ^ Ng, Chris Fook Sheng; Ueda, Kayo; Takeuchi, Ayano; Nitta, Hiroshi; Konishi, Shoko; Bagrowicz, Rinako; Watanabe, Chiho; Takami, Akinori (2014). "Sociogeographic Variation in the Effects of Heat and Cold on Daily Mortality in Japan". Journal of Epidemiology. 24 (1): 15–24. doi:10.2188/jea.JE20130051. PMC 3872520. PMID 24317342.
  108. ^ Stafoggia, Massimo; Forastiere, Francesco; Agostini, Daniele; Biggeri, Annibale; Bisanti, Luigi; Cadum, Ennio; Caranci, Nicola; de'Donato, Francesca; De Lisio, Sara; De Maria, Moreno; Michelozzi, Paola; Miglio, Rossella; Pandolfi, Paolo; Picciotto, Sally; Rognoni, Magda (2006). "Vulnerability to Heat-Related Mortality: A Multicity, Population-Based, Case-Crossover Analysis". Epidemiology. 17 (3): 315–323. doi:10.1097/01.ede.0000208477.36665.34. ISSN 1044-3983. JSTOR 20486220. PMID 16570026. S2CID 20283342.
  109. ^ a b c d Gronlund, Carina J. (September 2014). "Racial and Socioeconomic Disparities in Heat-Related Health Effects and Their Mechanisms: a Review". Current Epidemiology Reports. 1 (3): 165–173. doi:10.1007/s40471-014-0014-4. PMC 4264980. PMID 25512891.
  110. ^ O'Neill, M. S. (May 11, 2005). "Disparities by Race in Heat-Related Mortality in Four US Cities: The Role of Air Conditioning Prevalence". Journal of Urban Health: Bulletin of the New York Academy of Medicine. 82 (2): 191–197. doi:10.1093/jurban/jti043. PMC 3456567. PMID 15888640.
  111. ^ a b Sampson, Natalie R.; Gronlund, Carina J.; Buxton, Miatta A.; Catalano, Linda; White-Newsome, Jalonne L.; Conlon, Kathryn C.; O’Neill, Marie S.; McCormick, Sabrina; Parker, Edith A. (April 1, 2013). "Staying cool in a changing climate: Reaching vulnerable populations during heat events". Global Environmental Change. 23 (2): 475–484. Bibcode:2013GEC....23..475S. doi:10.1016/j.gloenvcha.2012.12.011. ISSN 0959-3780. PMC 5784212. PMID 29375195.
  112. ^ Niktash, Amirreza; Huynh, B. Phuoc (July 2–4, 2014). Simulation and Analysis of Ventilation Flow Through a Room Caused by a Two-sided Windcatcher Using a LES Method (PDF). World Congress on Engineering. Lecture Notes in Engineering and Computer Science. Vol. 2. London. eISSN 2078-0966. ISBN 978-9881925350. ISSN 2078-0958. Archived (PDF) from the original on April 26, 2018. Retrieved May 13, 2021.
  113. ^ Zhang, Chen; Kazanci, Ongun Berk; Levinson, Ronnen; Heiselberg, Per; Olesen, Bjarne W.; Chiesa, Giacomo; Sodagar, Behzad; Ai, Zhengtao; Selkowitz, Stephen; Zinzi, Michele; Mahdavi, Ardeshir (November 15, 2021). "Resilient cooling strategies – A critical review and qualitative assessment". Energy and Buildings. 251: 111312. Bibcode:2021EneBu.25111312Z. doi:10.1016/j.enbuild.2021.111312. hdl:2117/363031. ISSN 0378-7788.
  114. ^ Linden, P. F. (1999). "The Fluid Mechanics of Natural Ventilation". Annual Review of Fluid Mechanics. 31: 201–238. Bibcode:1999AnRFM..31..201L. doi:10.1146/annurev.fluid.31.1.201.
  115. ^ Santamouris, M.; Asimakoupolos, D. (1996). Passive cooling of buildings (1st ed.). London: James & James (Science Publishers) Ltd. ISBN 978-1-873936-47-4.
  116. ^ Leo Samuel, D.G.; Shiva Nagendra, S.M.; Maiya, M.P. (August 2013). "Passive alternatives to mechanical air conditioning of building: A review". Building and Environment. 66: 54–64. Bibcode:2013BuEnv..66...54S. doi:10.1016/j.buildenv.2013.04.016.
  117. ^ M.j, Limb (January 1, 1998). "BIB 08: An Annotated Bibliography: Passive Cooling Technology for Office Buildings in Hot Dry and Temperate Climates".
  118. ^ Niles, Philip; Kenneth, Haggard (1980). Passive Solar Handbook. California Energy Resources Conservation. ASIN B001UYRTMM.
  119. ^ "Cooling: The hidden threat for climate change and sustainable goals". phys.org. Retrieved September 18, 2021.
  120. ^ Ford, Brian (September 2001). "Passive downdraught evaporative cooling: principles and practice". Arq: Architectural Research Quarterly. 5 (3): 271–280. doi:10.1017/S1359135501001312. ISSN 1474-0516. S2CID 110209529.
  121. ^ a b Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022). "Passive daytime radiative cooling: Fundamentals, material designs, and applications". EcoMat. 4. doi:10.1002/eom2.12153. S2CID 240331557. Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming.
  122. ^ Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui (November 2014). "Passive radiative cooling below ambient air temperature under direct sunlight". Nature. 515 (7528): 540–544. Bibcode:2014Natur.515..540R. doi:10.1038/nature13883. PMID 25428501.
  123. ^ a b Bijarniya, Jay Prakash; Sarkar, Jahar; Maiti, Pralay (November 2020). "Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities". Renewable and Sustainable Energy Reviews. 133: 110263. Bibcode:2020RSERv.13310263B. doi:10.1016/j.rser.2020.110263. S2CID 224874019.
  124. ^ Mokhtari, Reza; Ulpiani, Giulia; Ghasempour, Roghayeh (July 2022). "The Cooling Station: Combining hydronic radiant cooling and daytime radiative cooling for urban shelters". Applied Thermal Engineering. 211: 118493. Bibcode:2022AppTE.21118493M. doi:10.1016/j.applthermaleng.2022.118493.
  125. ^ Yang, Yuan; Zhang, Yifan (July 2020). "Passive daytime radiative cooling: Principle, application, and economic analysis". MRS Energy & Sustainability. 7 (1). doi:10.1557/mre.2020.18.
  126. ^ Miranda, Nicole D.; Renaldi, Renaldi; Khosla, Radhika; McCulloch, Malcolm D. (October 2021). "Bibliometric analysis and landscape of actors in passive cooling research". Renewable and Sustainable Energy Reviews. 149: 111406. Bibcode:2021RSERv.14911406M. doi:10.1016/j.rser.2021.111406.
  127. ^ a b Needham, Joseph; Wang, Ling (1991). Science and Civilisation in China, Volume 4: Physics and Physical Technology, Part 2, Mechanical Engineering. Cambridge University Press. ISBN 978-0521058032. OCLC 468144152.
  128. ^ Dalley, Stephanie (2002). Mari and Karana: Two Old Babylonian Cities (2nd ed.). Piscataway, New Jersey: Gorgias Press. p. 91. ISBN 978-1931956024. OCLC 961899663. Archived from the original on January 29, 2021. Retrieved May 13, 2021.
  129. ^ Nagengast, Bernard (February 1999). "Comfort from a Block of Ice: A History of Comfort Cooling Using Ice" (PDF). ASHRAE Journal. 41 (2): 49. ISSN 0001-2491. Archived (PDF) from the original on May 13, 2021. Retrieved May 13, 2021.
  130. ^ Bahadori, Mehdi N. (February 1978). "Passive Cooling Systems in Iranian Architecture". Scientific American. 238 (2): 144–154. Bibcode:1978SciAm.238b.144B. doi:10.1038/SCIENTIFICAMERICAN0278-144.
  131. ^ Smith, Shane (2000). Greenhouse Gardener's Companion: Growing Food and Flowers in Your Greenhouse Or Sunspace. Illustrated by Marjorie C. Leggitt (illustrated, revised ed.). Golden, Colorado: Fulcrum Publishing. p. 62. ISBN 978-1555914509. OCLC 905564174. Archived from the original on May 13, 2021. Retrieved August 25, 2020.
[edit]

 

Photo
Photo
Photo
View GBP